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Abstract 

A probabilistic approach is described that is able to 
estimate triplet phase invariants when prior informa- 
tion on interatomic vectors and interatomic triangles 
is available. The conclusive formula is compared 
with the vector-interaction formula derived by 
Hauptman & Karle [Acta Cryst. (1962), 15, 547-550] 
and with a probabilistic formula obtained via 
maximum-entropy methods. 

Symbols and abbreviations 

The papers by Giacovazzo (1991) and Altomare, 
Cascarano & Giacovazzo (1992a,b) are referred to as 
papers I, II and III, respectively. Symbols and 
abbreviations are the same as those used in these 
papers. 

Introduction 

In paper I of this series, the standard method of joint 
probability distribution functions was modified in 
order to exploit the information provided by a 
Patterson map. If interatomic vectors uj, j~ = rj,-rj~ 
are known a priori, the symmetry-independent 
atomic positional vectors cannot be considered as 
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random variables uniformly distributed in the asym- 
metric unit (indeed, rjl is completely determined in 
terms of rj, and uj, j~). The theory provided triplet 
invariant estimates different from those provided by 
standard methods. The formula requires prior 
information both on the coordinates of the peaks 
and on the scattering factors of the atoms with 
mutual distance u. Since this second type of informa- 
tion is usually unavailable (for example because of 
peak overlapping), in paper II the formula was 
modified to depend on u and on the corresponding 
Patterson peak intensity. Some applications were 
also described. 

In paper III, the theory was extended to introduce 
the information contained in Harker sections. 

The main aim of this paper is to describe a proba- 
bilistic approach for triplet invariant estimation that 
is able to exploit the information contained in the 
interatomic triangles. This type of information 
includes prior knowledge of interatomic vectors and 
also takes into account correlation among different 
interatomic vectors. The problem is correlated with 
the double Patterson function (Sayre, 1953; Kroon & 
Krabbendam, 1970) and a first answer was found in 
an algebraic expression derived by Hauptman & 
Karle (1962) for the calculation of triplet phases 
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from the Patterson function. More recently, the 
derivation of an exponential joint probability distri- 
bution of structure factors with maximum entropy 
and irreducible cluster integrals (Kronenburg, 
Peschar & Schenk, 1991) led to a probabilistic 
formula (Kronenburg, 1992). 

In the present paper, our final formula is com- 
pared with corresponding expressions by Hauptman 
& Karle (1962) and Kronenburg (1992). 

The probabilistic approach 

When some interatomic vectors are known a priori 
(see § 6 of paper II), the average value of IFhl 2 is 

< >= + cos 2.. h R .  

X [:Z; fj, 01)fj:,01)1}). (1) 

Let us now suppose that, besides u:,A, u:, A (and 
consequently uAA ) is also simultaneously known; 
then, an interatomic triangle is known. It is immedi- 
ately seen from (1) that this prior information cannot 
change the expected value of IFhl 2. In other words, 

<lFhlZl{uj, j=,uj, j,,U:=j3}> - <lFhl21{U}>. 
Therefore, the normalized structure factor Eh calcu- 
lated by taking into account the prior information on 
{u:,:2,u:,j3,uj,:~ } is again defined by 

IEhl 2 = IFhlZ/<IFh] 2 {U}> 

or, according to equation (16) of paper If, 
/ [  "11/2 

IEhl = [Ehl 1 +~(2I'ceh) / , 
U ,,I 

where IEhl is the normalized structure factor calcu- 
lated in the absence of Patterson information, I~ = 
I./(j.Io), Io and I. are the Patterson peak heights at 
the origin and at u, respectively, j .  is the ratio 
between the order of the space group and the peak 
multiplicity and 

ah = ~ cos 2rrhRsu. 
S = '  

The conditional probability of O, given IEh, I, IEh~I, 
IEh31 and a set of interatomic triangles {u:,::uj,::%j3} 
is given by 

P( ~IEh, I,IEh~I,IEh31,{Uj, A,uj, j:uj=j3}) 
= [2zrlo(G)] - ~ exp [G cos ( O- g)], 

where 

6 exp (ig) = 2<FhF.2& {u:,:,,uj, :,,u:,:)> 
x [<lF,,,IZl{u})(IFh2l=l{U}><lFh31zl{U}) ] -  x/2 

X ]Eh,Eh~Eh3l (2) 

Since the averages <lFh, lZl{u}>, i= 1, 2, 3, are defined 
by (1), we only need to estimate 

<F~,Fh,&I{u,, j:U/n j3,Uj, j3}> 
=< Z fj,(h 1 )fjz012)£3013) 

J l ,  J=, J3 = 1 

x ~, exp 27ri[h,(C3, r j , -  C,3rj3 ) 
3"1, 3,2, $3= l 

+ hdG,r:2 - Cs3r:)]>. 

Let C= and C,~ be two symmetry operators for which 
Cs, = Cs3C. and C3,~ = Cs,C,,. Then, 

C s r j ,  --  Cs3rj3 = R s 3 ( C v r j .  - r j3),  

C3,2rj2- C3,3rj 3 .-- R s 3 ( C l a r j 2 -  rj3) 
(3) 

and 

<F~,eh=Fh31{Uj, j:Uj, j:U:= j3}> 

=(  j~j fJ )f:201)f: ,011 2 ,013) 
Jn, 3 = 1 

" 1) x Z exp 27ri[h,R,uj, j3-h2R,uj, j2 , 
s = l  

(4) 

where R3, stands for Rs, and uj, j3 = C v r : , - r  j3 and 
uAj 3 = C~,rj2- rj3 are the generic interatomic vectors 
including the effects of C v and C~,. 

The right-hand side of (4) contains three terms: 
(a) The term corresponding to the case j, =j2 =j3 

(the so-called Cochran term), equal to Y3011,h2,h3). 
(b) The term arising from the prior information 

on the existence of the vectors {u} and corresponding 
to the special cases j, = j  a, j2 -J3 ,  J, =j2. This term 
was calculated in paper I and denoted M exp (iO). 

(c) The term arising from the known correlation 
among the vectors {u} and corresponding to the case 
j, ~j2 ~j3. It may be observed that the Patterson 
function is centrosymmetric and that the vectors uj, j~, 
u:,:3 and uj2j3 must play a symmetrical role in (4). 
Accordingly, the contribution of this third term may 
be explicitly written by the symmetrized formula 

f_., fj,(hOJ~2012)J~3(h3) 
Jl ;~J2 ;~J3 

× ~ [cos 27r011R~uj, A-h2R~uj~A) 
s = l  

+ cos 2rr(hlR~UAA - h2R~u:, A) 

+ cos 2rr013R~u:, j~ - hzR~uA: ) 

+ cos 2rr013R~uj, :~ - h,R~uj~:~) 

+ cos 27r013R~uj~j~ - h~R~uj, A) 

+ cos 27r013R~uj~j~ - hzR~uj, j)]. (5) 
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Let us now denote the above contribution by the 
simplified symbol 

E fj,(h,)fj~(hz)fj,(h3)/3.,,..: 
UI~U 2 

where ul and u2 are vectors of type u u and ujk, 
respectively. Since (Hauptman & Karle, 1962) 

fj,(h ~)fj~(h2)fj~(h3)/[Eu(h,)EN(h2)Eu(h3)] I/z 

= z : z j z : / (o~2)  3'2 

= [(zj,z#o~2) (zj, z # ~ )  ( z j z # o ~ ) ] l , L  

the contribution (5) may be written in terms of 
Patterson peak heights I ' ,  provided there is no over- 
lap of Patterson peaks. After some calculations, we 
obtain 

P( q~IEh, I,IEh~[,IEh~I,{Ul,Uz}) 

~-- [27rio(G)] -1 exp (G cos qb), (6) 

where 

G = 21Eh,Eh~Eh, IN-1/2 [ (3) ] 
i ~ r x I + E .  E~ ,  + Z 1...,..~u:~ 

u \ i =  1 ul,u 2 {3[ 
X i~=iEh l+~(2/~i)Jj~ ( 7 )  

where I '  = [I'(u12)['(u13)l'(u23)] 1/2. Ul,U 2 
According to whether G is positive or negative, 

is expected to be close to 0 or zr, respectively. 
Equation (7) is clearly an extension of equation (11) 
of paper III. 

A comparison with the Hauptman & Karle (1962) 
vector-interaction formula 

In our notation, the vector-interaction formula may 
be written as 

[gh,Eh,Eh~l COS ~"'N-l/2(lEh,12 + IEh~l 2 + IEh3l 2 -  2) 

+ E/~,,u~3u,,u: (8) 
Ul,U 2 

The link between (6) and (8) may be described as 
follows. 

(a) Equation (8) is an algebraic relationship, 
therefore cosine values out of the permitted range 
( - 1 ,  + 1) can frequently be obtained. Owing to its 
probabilisticnature, the distribution (6) provides an 
expected value of cosq~ that is always in the interval 
( -  1,+ 1). 

(b) Equation (8) is asymptotic; indeed it is only 
valid when all the interatomic vectors of the struc- 
ture are taken into account. In this case, the term 

( = ~ )  3 m 

ZI"  a. I '  i I ' =i=lZ Zu Us=lZ cos27rhiRsu 

in (7) closely approximates 

(IEh, 12 -- 1) -4- (IEh~I 2 -- 1) + (IEh~l 2 -- 1) 
3 

= 2 Y, (Zj, Zj /o '2)~ cos27rhiR,uj,,j~ 
i=1  jl~j2 s = l  

and (7) reduces to 

[ t /~ ] M -  1/2 G = 2  (E~h,+E~h2+E~h~--2)+ Z -.,,u:---,.,q-. • 
u,,u~ 

Unlike (8), the distribution (6) is able to exploit the 
information contained in any subset of interatomic 
vectors and interatomic triangles. 

A comparison with the Kronenburg formula 

In our notation, the Kronenburg exponential distri- 
bution may be written as 

P( ~lgh, l,lghzl,lgh~],{Ul,U2}) 

=[2zrlo(G)] -1 expG[1 + Z fj, fj:fj3flu,.u~]. (9) 
Jl ;~J2 ;~J3 

Comparison of (9) with (6) suggests two things. (a) 
In (9), renormalization of structure factors (taking 
into account the prior information on Patterson 
peaks) is not performed. (b) The three terms for 
jl =j2 ;~j3, j2 =j3 ;~jl and jl =j3 ;~j2 are not considered 
(they cancel out in the Kronenburg derivation). Since 
their contribution is expected to be positive, we 
expect for (9) some tendency to overestimate the 
number of negative triplets. 

Applications 

Crystal structures with few heavy atoms are the best 
candidates for an efficient application of (6). We 
focused our attention onto two centrosymmetric 
structures: 

(a) CUPP (Cu2Br2Paf88H68, space group P2Jn, 
Z =  4; Camalli, Caruso & Venanzi, 1985); 

(b) AGI (Ag212P4C64H56 , space group P21/c, Z=  4; 
Camalli, Caruso & Venanzi, 1986). 

The results are presented in Table 1. SIR92 
(Altomare, Cascarano, Giacovazzo, Guagliardi, 
Burla, Polidori & Camalli, 1994) selected for CUPP 
8000 triplet invariants among the 499 largest IEI: 26 
triplets are really negative. The reliability parameter 
G was calculated by including in flu,.u2 all the 56 
interatomic triangles corresponding to Cu atoms 
[fraction of scattering power (f.s.p.) equal to 0.21]. 
The calculations were then repeated by including in 
flu,.,,2 the 56 interatomic triangles corresponding to 
Br atoms (f.s.p. = 0.30). These tests suggest that (6) 
can remarkably improve Cochran estimates only if 
the interatomic triangles used in the calculations 
involve a relevant percentage of the electron density. 
The expected tendency of the Kronenburg formula 
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Table 1. Comparison of estimated positive and 
negative triplets according to our formula and to the 

Kronenburg formula 

tar and nw are the numbers of  estimated triplets and of wrongly 
estimated triplets, respectively; f.s.p, is the fraction of  scattering 
power corresponding to the atoms involved in the triangles. 

Our formula [(6)] Kronenburg formula 
Positive Negative Positive Negative 
triplets triplets triplets triplets 
nr nw nr nw nr nw nr nw 

(a) CUPP (Cu2Br2P4C88H68) 
56 Cu-atom triangles 7904 20 96 90 7256 18 744 736 

f.s.p. = 0.21 
56 Br-atom triangles 7976 2 24 0 7898 2 102 78 

f.s.p. = 0.30 

(b) AGI (Ag212PaCraH56) 
56 Ag-atom triangles 7915 12 85 82 7489 6 511 502 

f.s.p. = 0.33 
56 I-atom triangles 7945 8 55 48 7688 4 312 301 

f.s.p. = 0.42 
560 Ag + I-atom 7988 3 12 0 7965 0 35 20 

triangles f.s.p. = 0.75 

to overestimate triplet negativity is also supported. 
These conclusions are confirmed by the following 
additional test. 

For AGI, 8000 triplet invariants among the 486 
largest IEI were selected by SIR92:15 triplets are 
really negative. The value of G was calculated by 
including in fl,,,u2 all the 56 interatomic triangles 
corresponding to Ag atoms (f.s.p. = 0.33); calcula- 
tions were then repeated by including iodine triangles 
(f.s.p. = 0.42). At the end, we calculated G by includ- 
ing in flu,,u2 all the 560 interatomic triangles corre- 
sponding to I and Ag atoms (f.s.p. = 0.75). 

Concluding remarks 

A probabilistic approach has been described that is 
able to take into account prior information on inter- 

atomic triangles that may be available after inspec- 
tion of a Patterson map. The procedure generalizes 
the so-called vector-interaction formula of 
Hauptman & Karle (1962) and provides a final for- 
mula different from a previous probabilistic expres- 
sion derived by Kronenburg (1992). The three 
methods are compared: our probabilistic approach 
overcomes some theoretical limitations of the 
algebraic method and improves triplet estimates pro- 
vided by the Kronenburg formula. Practical tests 
show also that our triplet estimates are markedly 
better than Cochran-Woolfson estimates, provided 
the electron density involved in the interatomic tri- 
angles is a non-negligible percentage of the total 
electron density. 

Thanks are due to Miss C. Chiarella for technical 
support. 
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Abstract 

A large sample population of grain-boundary 
geometries in annealed polycrystalline nickel has 
been collected and analysed. The data include all five 
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degrees of freedom, that is, the grain misorientation 
plus the crystallographic orientation of the boundary 
plane. The most significant category of boundaries 
on the basis of those geometries that could give 
rise to 'special' properties were symmetric and 
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